Periodic complex map germs and foliations
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Anais da Academia Brasileira de Ciências (Online) |
Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563 |
Summary: | Abstract In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive some consequences about the integrability of complex vector fields in dimension three in a neighborhood of a singular point. |
id |
ABC-1_94ac4b68d73205793b9f4f93c5ff851f |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652017000602563 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Periodic complex map germs and foliationsComplex germs of diffeomorphimssingular holomorphic foliationsintegrability of vector fieldsclosed orbitsAbstract In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive some consequences about the integrability of complex vector fields in dimension three in a neighborhood of a singular point.Academia Brasileira de Ciências2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563Anais da Academia Brasileira de Ciências v.89 n.4 2017reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201720170233info:eu-repo/semantics/openAccessCÂMARA,LEONARDO M.SCÁRDUA,BRUNO A.eng2017-12-13T00:00:00Zoai:scielo:S0001-37652017000602563Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2017-12-13T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Periodic complex map germs and foliations |
title |
Periodic complex map germs and foliations |
spellingShingle |
Periodic complex map germs and foliations CÂMARA,LEONARDO M. Complex germs of diffeomorphims singular holomorphic foliations integrability of vector fields closed orbits |
title_short |
Periodic complex map germs and foliations |
title_full |
Periodic complex map germs and foliations |
title_fullStr |
Periodic complex map germs and foliations |
title_full_unstemmed |
Periodic complex map germs and foliations |
title_sort |
Periodic complex map germs and foliations |
author |
CÂMARA,LEONARDO M. |
author_facet |
CÂMARA,LEONARDO M. SCÁRDUA,BRUNO A. |
author_role |
author |
author2 |
SCÁRDUA,BRUNO A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
CÂMARA,LEONARDO M. SCÁRDUA,BRUNO A. |
dc.subject.por.fl_str_mv |
Complex germs of diffeomorphims singular holomorphic foliations integrability of vector fields closed orbits |
topic |
Complex germs of diffeomorphims singular holomorphic foliations integrability of vector fields closed orbits |
description |
Abstract In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive some consequences about the integrability of complex vector fields in dimension three in a neighborhood of a singular point. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201720170233 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.89 n.4 2017 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302864054812672 |