Estudo, desenvolvimento e implementação de algoritmos de aprendizagem de máquina, em software e hardware, para detecção de intrusão de rede: uma análise de eficiência energética
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/1166 |
Resumo: | O constante aumento na velocidade da rede, o número de ataques e a necessidade de eficiência energética estão fazendo com que a segurança de rede baseada em software chegue ao seu limite. Um tipo comum de ameaça são os ataques do tipo probing, nos quais um atacante procura vulnerabilidades a partir do envio de pacotes de sondagem a uma máquina-alvo. Este trabalho apresenta o estudo, o desenvolvimento e a implementação de um algoritmo de extração de características dos pacotes da rede em hardware e de três classificadores de aprendizagem de máquina (Árvore de Decisão, Naive Bayes e k-vizinhos mais próximos), em software e hardware, para a detecção de ataques do tipo probing. O trabalho apresenta, ainda resultados detalhados de acurácia de classificação, taxa de transferência e consumo de energia para cada implementação. |