Classificação de genótipos de café arábica usando espectroscopia de infravermelho próximo

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Marquetti, Izabele
Orientador(a): Bona, Evandro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Campo Mourao
Medianeira
Programa de Pós-Graduação: Programa de Pós-Graduação em Tecnologia de Alimentos
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1133
Resumo: As condições ambientais do cultivo do café, como clima, tipo de solo e altitude, associadas a práticas agrícolas, são responsáveis pela composição química final do grão. Além disso, o genótipo cultivado também influencia diretamente nas características essenciais da bebida, aumentando o seu valor agregado. Portanto, comprovações da origem geográfica e genotípica da genótipo do café devem ser realizadas utilizando métodos confiáveis. A espectroscopia no infravermelho próximo (NIRS), na região de 1100 a 2498 nm, foi utilizada na análise de genótipos de café arábica, cultivadas em diferentes cidades do estado do Paraná, Brasil. Como primeira aproximação, os métodos lineares, análise de componentes principais (ACP) e mínimos quadrados parciais com análise discriminante (PLS-DA), foram utilizados para a interpretação dos dados devido à complexidade e elevada quantidade de informação contida nos espectros. Os modelos PLS-DA obtidos para a classificação geográfica apresentaram uma sensibilidade média de 93,75% e uma especificidade de 100%. Já para a classificação dos genótipos a performance do PLS- DA foi de 93,75% para sensibilidade e 97,13% para a especificidade. Na tentativa de melhorar a performance e a confiabilidade de classificação foram desenvolvidos modelos de dois estágios. Tanto os scores da ACP como as variáveis latentes do PLS-DA foram alimentados em dois tipos diferentes de redes neurais artificiais, o perceptron de múltiplas camadas (MLP) e a rede de funções de base radial (RBF) que são modelos inerentemente não-lineares. Os respectivos parâmetros de arquitetura dessas redes foram otimizados através do método de busca direta simplex sequencial. Os modelos de dois estágios, linear com PLS-DA e não-linear com RBF, foram capazes de classificar geograficamente e genotipicamente com 100% de seletividade e especificidade todas as amostras de treinamento e de teste. As variáveis latentes do PLS-DA por serem determinadas levando-se em consideração a resposta desejada contêm mais informação que os scores da ACP. Já a rede RBF, por possuir um número menor de parâmetros livres e uma estrutura mais simples quando comparada à MLP, possui um treinamento mais rápido e convergente. Quando comparados com os resultados obtidos na espectroscopia de infravermelho médio (FTIR), os modelos obtidos usando os espectros NIRS apresentaram uma performance melhor e mais confiável. Estes resultados indicam que os espectros NIRS contêm informações importantes que aliadas a métodos adequados de reconhecimento de padrões resultam em uma classificação eficiente de amostras de café arábica verde por genótipo e local de cultivo. Além disso, uma análise dos loadings das variáveis latentes do PLS-DA permite associar quais bandas são características em cada classe. Essa informação pode ser correlacionada com a composição química das amostras fornecendo, assim, dados preliminares para avaliar o efeito da região de cultivo e do tipo de genótipo selecionado nas características químicas do grão de café verde.