Estimação conjunta de atraso de tempo subamostral e eco de referência para sinais de ultrassom
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/2616 |
Resumo: | Em ensaios não destrutivos por ultrassom, o sinal obtido a partir de um sistema de aquisição de dados real podem estar contaminados por ruído e os ecos podem ter atrasos de tempo subamostrais. Em alguns casos, esses aspectos podem comprometer a informação obtida de um sinal por um sistema de aquisição. Para lidar com essas situações, podem ser utilizadas técnicas de estimativa de atraso temporal (Time Delay Estimation ou TDE) e também técnicas de reconstrução de sinais, para realizar aproximações e obter mais informações sobre o conjunto de dados. As técnicas de TDE podem ser utilizadas com diversas finalidades na defectoscopia, como por exemplo, para a localização precisa de defeitos em peças, no monitoramento da taxa de corrosão em peças, na medição da espessura de um determinado material e etc. Já os métodos de reconstrução de dados possuem uma vasta gama de aplicação, como nos NDT, no imageamento médico, em telecomunicações e etc. Em geral, a maioria das técnicas de estimativa de atraso temporal requerem um modelo de sinal com precisão elevada, caso contrário, a localização dessa estimativa pode ter sua qualidade reduzida. Neste trabalho, é proposto um esquema alternado que estima de forma conjunta, uma referência de eco e atrasos de tempo para vários ecos a partir de medições ruidosas. Além disso, reinterpretando as técnicas utilizadas a partir de uma perspectiva probabilística, estendem-se suas funcionalidades através de uma aplicação conjunta de um estimador de máxima verossimilhança (Maximum Likelihood Estimation ou MLE) e um estimador máximo a posteriori (MAP). Finalmente, através de simulações, resultados são apresentados para demonstrar a superioridade do método proposto em relação aos métodos convencionais. |