Investigação da bioatividade e das propriedades termo-físico-mecânicas de resinas vegetais e sua processabilidade na fabricação aditiva (3D)
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Ponta Grossa |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia de Produção
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/2274 |
Resumo: | Com o desenvolvimento das tecnologias de impressão tridimensionais (3D) para prototipagem rápida, novos materiais estão sendo constantemente pesquisados, porém, nem todos possuem as características necessárias para serem utilizados para esta finalidade. O custo dos materiais comumente utilizados e suas limitações de aplicação e reutilização são aspectos que devem ser levados em conta, e envolvem a busca por materiais de baixo custo, com adequadas características termomecânicas como também de manufatura, reciclagem, biodegradabilidade e que sejam provenientes de fontes renováveis. Empiricamente, a história da farmácia e da medicina é conhecida por utilizar plantas medicinais devido a suas propriedades bioativas, recentemente a comprovação científica da utilização das substâncias resultantes de seu metabolismo secundário justifica esta afirmação. Dentro deste contexto, o objetivo geral desta tese foi avaliar a bioatividade das resinas vegetais de Stirax benzoin, Commiphora myrrha e Boswellia papyrifera contra os micro-organismos Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, e Candida albicans através da metodologia de difusão em ágar, e também verificar sua possibilidade de aplicações como materiais de impressão 3D através da avaliação de suas propriedades térmicas e físico-mecânicas. Os filamentos foram confeccionados via Hot Melt Extrusion (HME) sendo posteriormente impressos via Fused Deposition Modeling (FDM). Os materiais obtidos foram caracterizados por espectroscopia no ultravioleta visível (UV-vis), infravermelho com transformada de Fourier (FTIR), difração por raios X (DRX) e calorimetria exploratória diferencial (DSC), adicionalmente testes de resistência mecânica à tração e à compressão também foram realizados. Como resultado os materiais inibiram o crescimento dos organismos patógenos em estudo como também apresentaram características adequadas de extrusão e impressão 3D utilizando a técnica de modelagem por deposição fundida. |