Inteligência computacional no sensoriamento a fibra ótica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Negri, Lucas Hermann lattes
Orientador(a): Fabris, José Luís lattes
Banca de defesa: Fabris, José Luís, Pohl, Alexandre de Almeida Prado, Arruda, Lucia Valeria Ramos de, Coelho, Leandro dos Santos
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2873
Resumo: Esta tese apresenta aplicações de inteligência computacional para o aprimoramento de sensoriamento ótico realizado com sensores em fibra ótica. Para tanto, redes neurais artificiais (perceptron de múltiplas camadas), máquinas de vetor de suporte para regressão, evolução diferencial e métodos de sensoriamento compressivo são empregados em conjunto com transdutores de redes de Bragg em fibras óticas. As redes neurais artificiais, máquinas de vetor de suporte para regressão e redes de Bragg são empregadas na localização de uma carga aplicada sobre uma placa de acrílico. É apresentado um novo método utilizando evolução diferencial para a solução do problema do espalhamento inverso em redes de Bragg em fibra ótica, propondo o uso de restrições para solucioná-lo na ausência de informação de fase do sinal refletido. Um método para a detecção de múltiplas cargas posicionadas acima de uma placa de metal é proposto. Neste método, a placa de metal é suportada por anéis de ferro contendo redes de Bragg em fibra ótica e a detecção das cargas é realizada com o uso de métodos de sensoriamento compressivo para a solução do problema inverso subdeterminado resultante. A troca dos anéis de ferro por blocos de silicone e um novo método baseado em sensoriamento compressivo e evolução diferencial são propostos. Os resultados experimentais mostram que os métodos computacionais propostos auxiliam o sensoriamento e podem permitir uma melhoria da resolução espacial do sistema sem a necessidade do aumento do número de elementos transdutores.