Redes neurais artificiais para estimar a precipitação na irrigação por aspersão
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Medianeira |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Tecnologias Computacionais para o Agronegócio
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/3372 |
Resumo: | Este trabalho apresenta uma abordagem teórico-conceitual do modelo de irrigação por aspersão relatando seus métodos, eficiência e manejo. Apresenta os conceitos, técnicas de aprendizado, topologias e algoritmos para treinamento das redes neurais artificiais. O objetivo da pesquisa foi construir um modelo baseado nas redes neurais artificiais capazes de estimar as precipitações de um aspersor. Foi usado o algoritmo de treinamento backpropagation com e sem o termo momentum e várias taxas de aprendizado a fim de conduzir para a escolha da melhor rede fazendo uso do software SNNS. A rede (6X459X1) com 6 neurônios na camada de entrada, 459 na camada oculta e 1 na camada de saída foi a que apresentou o menor erro (MSE) è obtida com taxa de aprendizado á 0,7 e com o uso do termo momentum (μ=0,3). As simulações apresentaram bons resultados na análise estatística, com coeficiente de determinação (R2) igual a 0,93 para o ajuste linear, e distribuição normal para Lilliefors. A análise por Anova refletiu homogeneidade válida e hipótese aceita para o teste de Cochran C e Bartlett. O coeficiente de Pearson resultou em uma correlação muito forte entre os resultados simulados e observados, e a comparação deu-se em torno de 0,0 a 0,29 mm de precipitação. Os testes se mostraram promissores em termos estimativos para a irrigação por aspersão. |