Controle baseado em redes neurais artificiais, aplicado a um sistema híbrido de tratamento para remoção do corante reativo azul 5g de solução sintética

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Pinto, Andre Hoffmann lattes
Orientador(a): Eyng, Eduardo lattes
Banca de defesa: Eyng, Eduardo, Baraldi, Ilton Jose, Borba, Carlos Eduardo, Frare, Laercio Mantovani
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Medianeira
Programa de Pós-Graduação: Programa de Pós-Graduação em Tecnologias Ambientais
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2924
Resumo: O complexo têxtil abrange uma das indústrias mais tradicionais da economia mundial e de grande importância na vida das pessoas, seus processos principalmente nas etapas de tingimento e acabamento, requerem um grande volume de água. Corantes são largamente utilizados e os efluentes gerados tornam-se altamente contaminadores de corpos receptores. Várias opções de tratamentos vêm sendo estudadas. O processo eletrolítico conhecido como eletrofloculação vem sendo visto como um método promissor. Outro método de tratamento muito promissor é a coagulação orgânica a qual possui vantagens em relação à coagulação química como a baixa toxicidade e biodegradabilidade. A eletrofloculação combinada com a coagulação orgânica torna-se um tratamento híbrido vantajoso desde que controlado. Neste contexto, o objetivo desse trabalho foi Implementar um controle baseado em Redes Neurais Artificiais (RNA’s) em um sistema híbrido de tratamento (eletrofloculação e coagulação natural) para remoção do Corante Reativo Azul 5G de uma solução sintética. A escolha do Delineamento Composto Central Rotacional (DCCR) deu-se por abranger todo o espaço experimental utilizando um número menor de ensaios. A partir desse delineamento foram executados 17 ensaios para análise estatística a qual validou o modelo matemático gerado. Com base nesse modelo foram gerados os bancos de dados de treinamento e validação da RNA que foi implementada no software Matlab. Testes empíricos definiram a arquitetura da RNA baseado no desempenho do treinamento com a configuração 3 camadas sendo 2 ocultas com 9 neurônios na primeira, 12 na segunda e 2 na camada de saída. O controle foi do tipo feedforward, mas devido ao ferro residual decorrente do tratamento necessitar de 24 horas de decantação para posterior leitura a ação feedback foi fornecida pelo modelo matemático preditivo. Os ensaios de controle comprovaram a eficiência do controlador para testes com perturbações negativas na concentração de corante na entrada do tratamento garantindo um valor de saída de concentração sempre abaixo do valor de set point estabelecido. Para perturbações positivas o controle não foi significativo o que se pode atribuir ao erro incluso do modelo matemático podendo ainda estar relacionado à variabilidade da qualidade das sementes de Moringa Oleífera Lam.