Effective thickness dependence on charge carrier transport in electrolyte-gated organic field-effect transistors

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Luginieski, Marcos lattes
Orientador(a): Seidel, Keli Fabiana lattes
Banca de defesa: Coutinho, Douglas Jose lattes, Serbena, Jose Pedro Mansueto lattes, Seidel, Keli Fabiana lattes, Santos, Lucas Fugikawa lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Física e Astronomia
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/27497
Resumo: Transistores orgânicos de efeito de campo (OFETs, do inlês) começaram a ser estudados na década de 1980. Desde então, diversos estudos focaram na melhora do desempenho desses dispositivos orgânicos, investigando propriedades de transporte dos polímeros conjugados, a geometria dos dispositivos, materiais, tipos de junção, etc. Esses esforços se devem às vantagens que os OFETs apresentam em comparação com seus equivalentes inorgânicos: baixo custo de produção, flexibilidade mecânica e fabricação por processamento de solução. Mais recentemente, a classe dos transistores eletrolíticos chamou muita atenção devido suas possibilidades de aplicações como biosensores, interfaces neuromórficas, circuitos integrados, entre outras. Os transistores eletrolíticos são comumente baseados na mesma arquitetura dos OFETs, mas substituem a camada dielétrica de porta por um dielétrico contendo íons, como por exemplo, líquidos iônicos ou filmes sólidos de géis iônicos. Dentre os transistores eletrolíticos, é possível obter dois modos de operação distintos, nos quais a modulação ocorre por: (i) o efeito de campo somente, nomeando o dispositivo como FET de porta eletrolítica (EGOFET, do inglês) ou (ii) dopagem eletroquímica, quando íons difundem no semicondutor, recebendo o nome de transistor orgânico eletroquímico (OECT, do inglês). Enquanto os OECTs receberam seu primeiro modelo teórico em 2007, os EGOFETs ainda são comumente descritos a partir de modelos desenvolvidos para os OFETs. O presente trabalho visa a modelagem teórica de OFETs e EGOFETs por meio de uma mobilidade de efeito de campo constante e não-constante, dependente da espessura da camada de acumulação ao longo do semicondutor/canal. Considerando efeitos do transporte de portadores de carga por meio de caminhos de percolação e uma distribuição de armadilhas rasas, foi possível demonstrar que o presente modelo pode ser comparado aos modelos anteriormente estabelecidos para os OFETs, mas apresentado vantagens que enriquecem as informações sobre a variação da espessura da camada ativa ao longo do canal e sua dependência na mobilidade de efeito de campo. Ao aplicar o modelo ao transporte de portadores de carga em EGOFETs, que possuem uma alta capacitância devido ao eletrólito, o presente modelo mostrou-se mais adequado para descrever o comportamento desses dispositivos. Além dos regimes de operação comuns aos transistores com modulação por efeito de campo, o modelo foi capaz de descrever alguns efeitos não-ideais. Um desses efeitos é um crescimento na curva de saída entre a transição dos regimes de acumulação e saturação, que será chamada aqui como protuberância. Essa protuberância já foi reportada experimentalmente por muito tempo, sendo atribuída a várias hipótese fenomenológicas. Bons ajustes entre o presente modelo e dados experimentais foram feitos, por meio dos quais foi possível atribuir esse fenômeno a uma transição entre transporte 2D para 3D nos EGOFETs. Outro fenômeno não-ideal é um comportamento não-ôhmico na região de acumulação da corrente de saída, o qual foi modelado e atribuído a uma dependência na distribuição exponencial de armadilhas rasas. Esses dois efeitos nunca haviam sido modelados anteriormente na literatura de EGOFETs. Além disso, o presente modelo apresenta uma vantagem pela sua simplicidade, facilitando o entendimento dos fenômenos e um fácil ajuste de dados experimentais.