Inferência baseada em voxel para fMRI
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/26343 |
Resumo: | Introdução: Mapas estatísticos paramétricos são construídos a partir de testes de hipóteses aplicados para cada voxel de imagens funcionais. Erros tipo I podem ocorrer muito frequentemente quando um grande número de testes e´ realizado simultaneamente. Embora este seja um problema central em estudos de neuroimagem, a melhor solução ainda não foi encontrada. Duas abordagem são mais utilizadas em fMRI: a teoria dos campos aleatórios (RFT) e a taxa de falsas descobertas (FDR). A RFT pode ser considerada atualmente o método padrão para controle de erro por família de testes (FWE), apesar de sua complexidade e suposições restritivas. Se o pesquisador está disposto a aceitar alguns falsos positivos na imagem, procedimentos que controlam a FDR, como o de Benjamini e Hochberg (B&H), podem gerar resultados mais liberais, com suposições mínimas. Este trabalho inclui ainda uma revisão da literatura recente sobre o tema. Objetivos: Avaliar a performance dos procedimentos RFT e B&H, bem como o procedimento convencional de Bonferroni (BON) e sem nenhuma correção (UNC). Método: Um conjunto de dados foi adquirido em repouso, em 1,5 T. Um filtro passa alta foi aplicado, e os volumes foram permutados no tempo para evitar o efeito da auto correlação. Áreas de “ativação” utilizando um sinal do tipo bloco foram adicionados, utilizando como referência a resposta hemodinâmica canônica, com parâmetros ligeiramente variáveis para cada período de “ativação”. O modelo linear geral foi aplicado para dados com e sem sinal, bem como para imagens suavizadas e não-suavizadas espacialmente. A estimação da suavização foi baseada nos resíduos do modelo linear geral. Para cada condição, mapas estatísticos foram gerados e limiarizados com os procedimentos UNC, BON, B&H e RFT. Resultados: Todos os métodos avaliados resultaram em controle apropriado da quantidade de erros, dentro de suas limitações teóricas sendo o de B&H o mais poderoso. O procedimento de Bonferroni foi menos conservador do que o esperado. O procedimento de B&H resultou em limiar variável, e controle mais exato sobre FDR quanto maiores as áreas de atividade simulada. Verificou-se ainda que a suavização interfere no valor do limiar de B&H. Para RFT os resultados foram conservadores para os níveis de suavização avaliados, mas aproximaram-se do nível de significância nominal para suavização com filtro de largura igual a 2,0 voxels. A suavização interferiu de forma indesejada nas medidas dependentes da contagem de voxels |