Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Celso Bilynkievycz dos lattes
Orientador(a): Pilatti, Luiz Alberto lattes
Banca de defesa: Guimarães, Alaine Margarete, Carvalho, Deborah Ribeiro, Xavier, Antonio Augusto de Paula, Ishikawa, Gerson
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Ponta Grossa
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Produção
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2325
Resumo: A previsibilidade de indicadores de qualidade de vida pode contribuir na projeção de variáveis dependentes, auxiliar em tomadas de decisões para sustentar ou não políticas públicas e justificar o cenário vivido pelos países e o mundo. Objetivo: Prever o Índice de Desenvolvimento Humano (IDH) e a expectativa de vida (EV) nos países latino-americanos no período de 2015 a 2020, utilizando técnicas de Mineração de Dados. Metodologia: Foram percorridas as etapas do processo Descoberta de Conhecimento em Base Dados (DCBD). Durante a etapa de DCBD de Mineração de Dados, foi avaliado o desempenho de diferentes algoritmos com paradigma de aprendizado baseados em funções. A partir do algoritmo com melhor desempenho, foram desenvolvidos 748 modelos de previsão univariados e dois multivariados para previsão do IDH de 187 países do mundo e seus resultados, comparados com os últimos relatórios do United Nations Development Programme (UNDP), para definição do modelo mais eficiente. Os resultados desses testes de previsões ainda foram comparados com 44 modelos univariados Autoregressive Integrated Moving Average (ARIMA). A partir da definição do melhor algoritmo de Mineração de Dados e modelo, fez-se a previsão do IDH e da EV para os países da America Latina para o período de 2015 a 2020. Resultados: O algoritmo SMOReg e os modelos multivariados apresentaram melhor desempenho nos testes desenvolvidos durante o experimento. As médias de crescimento do IDH e EV previstas para os países latino-americanos tendem a aumentar no período analisado, respectivamente, 4,99±3,90 % e 2,47±0,09 anos. Conclusão: Experiências multivariadas possibilitam maior aprendizagem dos algoritmos, aumentando sua precisão. As técnicas de Mineração de Dados apresentaram melhor qualidade nas previsões em relação à técnica mais popular, ARIMA. As previsões sugerem média de crescimento do IDH e EV dos países latino-americanos maiores que a média mundial.