O potencial das redes neurais artificiais como suporte para o desenvolvimento de índices de sustentabilidade para edifícios habitacionais (ISE-H)

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Costa, Carlos Alberto da lattes
Orientador(a): Romano, Cezar Augusto lattes
Banca de defesa: Santos, Adriana de Paula Lacerda lattes, Iarozinski Neto, Alfredo lattes, Romano, Cezar Augusto lattes, Santos, Eduardo Alves Portela lattes, Krüger, Eduardo Leite lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Civil
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/30411
Resumo: A indústria da construção civil, por movimentar uma vasta cadeia produtiva, contribui com diversos e elevados níveis de impacto. Se por um lado, gera emprego, renda, impostos, riqueza e bem-estar, por outro usa intensa e deleteriamente recursos naturais, gera muitos resíduos e ainda representa alto risco à vida dos trabalhadores. O conceito de sustentabilidade tem mudado o modo de planejar, projetar, construir, operar, manter os edifícios e até desconstruir e destinar seus resíduos. Surge deste contexto o desafio de se medir os efeitos desse novo pensar e agir. Mas, até então, os métodos de análise da sustentabilidade na construção civil mais reconhecidos, dentre eles: BREEAM, LEED, DGNB, AQUA-HQE e CASA AZUL+CAIXA, se concentram na atribuição de pontos e créditos pela implantação de diretrizes, estratégias e sistemas, soluções, enfim, voltadas majoritariamente aos aspectos ambientais, nem sempre avaliando objetivamente os resultados obtidos ou os impactos gerados, inclusive nas dimensões social e econômica. Verificou-se que uma análise mais completa, confiável e objetiva envolve uma quantidade significativa de variáveis a serem agregadas requerendo uma ferramenta capaz de lidar com essa complexidade. Assim, o objetivo geral deste trabalho foi analisar o potencial das Redes Neurais Artificiais (RNAs) como forma de suporte para obtenção de Índices de Sustentabilidade para Edifícios Habitacionais (ISE-H), partindo de um conjunto equilibrado de indicadores ambientais, sociais e econômicos. Utilizou-se como método de pesquisa a Revisão Sistemática da Literatura (RSL), complementada pela Revisão Narrativa da Literatura (RNL), de onde foram obtidos 75 indicadores e 25 sugestões de indicadores tendo em vista diversos aspectos, tais como: ênfase, dimensão da sustentabilidade, tipo de variável, impactos e tipos de danos, bem como o alcance destes danos em termos geográficos e temporais. Foram feitas simulações das RNAs com o apoio do software SPSS v23 da IBM, adotando-se como Edifício de Referência o Projeto Padrão R8-N, conforme a ABNT NBR 12721:2006, utilizado para obtenção do Custo Unitário Básico (CUB/m2) das construções. As Redes Neurais Artificiais se mostraram como alternativa muito viável, com forte potencial para agregar grande quantidade de variáveis (indicadores) e gerar índices que revelam a distância para melhor, em relação ao modo convencional de construção, expressando diferentes níveis de sustentabilidade dos edifícios construídos no Brasil.