Controle de posição utilizando algoritmo genético com minimização de entropia do erro

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Jacinto, Daniel Cordeiro lattes
Orientador(a): Scalassara, Paulo Rogério lattes
Banca de defesa: Scalassara, Paulo Rogério, Angélico, Bruno Augusto, Endo, Wagner, Agulhari, Cristiano Marcos
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/3351
Resumo: Este trabalho tem como proposta a síntese de controladores aplicando um Algoritmo Genético, cuja função objetivo é minimizar a entropia do erro. Recentes estudos demonstram que métodos utilizados em sistemas que utilizam o erro quadrático médio para estimativa de erros não apresentam desempenho satisfatório se tratando de sinais não-gaussianos e não-lineares, assim foi necessária a busca de novas alternativas para resolução de problemas mais complexos. O método de minimização de entropia do erro vem sendo utilizado em pesquisas e apresentando desempenho satisfatório nesta área. Os controladores utilizados são dados na forma de função de transferência e buscou-se pela sintonização dos parâmetros do algoritmo genético em busca de melhor performance para o controlador gerado. Para testes foram feitas simulações utilizando o software MATLAB e a validação foi realizada em uma planta torcional com MATLAB/Simulink. Também é apresentada uma comparação com o método do erro quadrático médio. Resultados satisfatórios foram encontrados para ambos os métodos, porém, notou-se maior tempo de execução para a minimização de entropia devido a maior complexidade de sua função, que utiliza técnicas de janelamento de Parzen para estimar a função densidade de probabilidade do erro.