Exportação concluída — 

Controlador de demanda e emulador do consumidor residencial para manutenção do conforto do usuário em Smart Grids

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Maciel, Savio Alencar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Pato Branco
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1089
Resumo: This work presents an approach to control demand for residential low voltage consumers, aiming to improve energy efficiency in Smart Grids. Initially, an emulator of residential electric loads is modeled based on the literature. The emulator consists of a reservoir for water heating model, the model of an air conditioner and also models of consumption for lighting, televisions and a refrigerator. The implementation and simulation were performed using software Matlab. The demand control algorithms are investigated in order to verify its performance when applied to the set of residential loads. These algorithms typically perform control demand from a system of priorities. Still, from this analysis it demonstrates that these algorithms consider levels of user comfort, but do not allow the drive of two or more loads in the same period of residence if the demand exceeds the limit. Therefore, we propose a control algorithm that uses Rosenbrock search of demand adaptive method, aiming to overcome these limitations. The proposed procedure performs the operation of residential loads gradually considering priority levels and parameters of comfort of users. It is shown through simulations and experiments using the proposed method can perform the activation of several concurrently loads, provided they comply with the limits of comfort and demand. To obtain the experimental results demand the controller was implemented in an embedded system and tested with the emulator residential electrical loads implemented in a HIL (Hardware-in-theloop) architecture. Analyzing the results, it was observed that the power consumption is the same for all scenarios simulated and demand remained below parametric limits. But with the demand limiter active, we obtained a reduction of up to 52% in heat water using the demand controller adaptive, so the discomfort of the users can be minimized.