Análise comparativa de modelos lineares para previsão do preço do açúcar

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Bassetto, Priscilla lattes
Orientador(a): Siqueira, Hugo Valadares lattes
Banca de defesa: Siqueira, Hugo Valadares lattes, Trojan, Flavio lattes, Meza, Gilberto Reynoso lattes, Stevan Junior, Sergio Luiz lattes, Kachba, Yslene Rocha lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Ponta Grossa
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Produção
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/31205
Resumo: O processo de previsão de séries temporais baseia-se no pressuposto de que os valores futuros são previstos a partir de observações passadas e outras entradas. Trata-se de uma das mais antigas técnicas de análise preditiva e possui bases estatísticas profundas sendo amplamente utilizada nos ambientes organizacionais e de pesquisa. Uma abordagem comum para análise de séries temporais envolve avaliar várias técnicas de modelagem em um conjunto de dados e observar como elas explicam o comportamento do seu passado. Neste sentido, um problema de relevância para os dias atuais é compreender os movimentos nos preços mundiais do açúcar. Entender a dinâmica de preços entre os mercados doméstico e internacional é de grande importância para o planejamento estratégico do setor sucroalcooleiro. Dessa forma, o presente estudo tem como objetivo analisar modelos lineares de previsão de séries temporais para prever o preço do açúcar. Para isso, foram utilizados quatro bases de dados, Brasil, Estados Unidos, Mundo e União Europeia. Os dados foram aplicados usando 7 modelos, sendo eles, Autorregressivo (AR), Médias Móveis (MA), Autorregressivo e Médias Móveis (ARMA), Autorregressivo Integrado de Médias Móveis (ARIMA), Suavização exponencial simples (SES), Suavização exponencial com tendência (HOLT) e Suavização exponencial com tendência e sazonalidade (HOLT WINTERS) e ao final foram realizadas combinações de diferentes modelos baseado na média das saídas dos preditores. Para a presente pesquisa utilizou-se medidas quantitativas de acurácia para avaliar os modelos de previsão: Raiz Erro Quadrático Médio (RMSE) Erro Absoluto Médio (MAE) e Erro Percentual Absoluto Médio (MAPE). Pode-se observar que para previsões de 1 passo à frente os modelos da família ARIMA estimaram maior precisão o preço do açúcar. Já para as previsões de 3, 6 e 12 passos à frente a família HOLT WINTERS foram os modelos que apresentaram melhor desempenho.