Estimativa de desempenho acadêmico de estudantes em um AVA utilizando técnicas de mineração de dados

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Gottardo, Ernani
Orientador(a): Noronha, Robinson Vida
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/439
Resumo: Alguns ambientes educacionais têm incorporado softwares que são utilizados como apoio ou, em alguns casos, como condição básica para a disponibilização de cursos. Neste cenário, destacam-se os Ambientes Virtuais de Aprendizagem (AVA) usados para apoiar o desenvolvimento de cursos presenciais, semipresenciais e a distância. Os AVA caracterizam-se por armazenar um grande volume de dados. Contudo, esses ambientes carecem de ferramentas que permitam extrair informações úteis para o desenvolvimento de processos de acompanhamento eficiente dos estudantes. Diante disso, esta pesquisa investiga como os dados armazenados em um AVA poderiam ser processados para geração de informações relacionadas a estimativas de desempenho acadêmico futuro de estudantes. Para obter essas informações, primeiramente fez-se necessário a seleção de um conjunto de atributos para representar estudantes em um curso a distância (EAD) utilizando um AVA. O conjunto de atributos foi escolhido considerando-se três dimensões, selecionadas partir da análise de referências teóricas da literatura sobre cursos EAD: perfil de uso do AVA, interação estudante-estudante e interação bidirecional estudante-professor. Aplicando-se técnicas de mineração de dados sobre o conjunto de atributos selecionados, foi possível então a obter estimativas sobre o desempenho futuro de estudantes. Essas estimativas poderiam apoiar o desenvolvimento de processos de acompanhamento efetivo dos estudantes, atividade de fundamental importância em cursos EAD. Neste trabalho, um estudo com sete experimentos foram realizados e apresentam diferentes cenários em que as estimativas sobre o desempenho podem ser obtidas. Os resultados desses experimentos apontam para a viabilidade desta proposta, tendo em vista os índices promissores de acurácia obtidos na classificação de estudantes quanto ao seu desempenho final nos cursos.