Modelo de otimização multiobjetivo baseado em algoritmo Shuffled Frog Leaping para transporte de produtos em redes de dutos

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Lamboia, Fabiany lattes
Orientador(a): Arruda, Lucia Valeria Ramos de lattes
Banca de defesa: Arruda, Lucia Valeria Ramos de, Nievola, Julio Cesar, Toledo, Franklina Maria Bragion de, Neves Junior, Flavio
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2029
Resumo: A modelagem de sistemas envolvidos no gerenciamento das operações de uma rede de dutos é um problema de otimização que envolve complexas restrições operacionais. O transporte por meio de dutos mostra-se confiável e econômico, principalmente para grandes volumes. Porém, a elevada taxa de ocupação das redes de distribuição e a quantidade de diferentes produtos que devem ser transportados sob condições operacionais diferenciadas levam a cenários operacionais complexos. Uma melhoria na eficiência do transporte de produtos através de redes de dutos pode ser obtida por uma melhor alocação dos recursos disponíveis, contudo além de ser este um problema combinatório de difícil solução, é também um problema de otimização multiobjetivo. Para resolver este tipo de problema, as técnicas baseadas em metaheurísticas populacionais, em especial os algoritmos evolucionários parecem adequados pois tratam simultaneamente com um conjunto de soluções possíveis que permite encontrar um conjunto de soluções ótimas de Pareto com a simples execução do algoritmo. Neste contexto, este trabalho tem como objetivo o desenvolvimento de modelos de otimização multiobjetivo aplicados ao escalonamento de operações em rede de dutos existente na indústria P & G, investigando técnicas baseadas em metaheurísticas que auxiliem na tomada de decisões deste cenário específico, em especial, técnicas baseadas em algoritmos evolucionários multiobjetivos. Assim, usa-se uma abordagem que propõe o uso de um algoritmo evolucionário multiobjetivo inspirado a partir da evolução memética de um grupo de sapos que procuram por comida: o SFLA (Shuffled Frog Leaping Algorithm). Os resultados obtidos a partir das simulações realizadas serão comparados com um algoritmo muito conhecido e usado na literatura, o algoritmo genético (AG). Além disso, como este trabalho utiliza um modelo de otimização multiobjetivo e nestes casos procura-se um conjunto de soluções Pareto-ótimas, uma nova abordagem é proposta para o algoritmo SFLA: o Modified Shuffled Frog-leaping Pareto Approach (MSFLPA). Esta nova abordagem combina o uso de uma pequena população e uma estratégia de arquivamento com um processo de reinicialização da população usando duas memórias auxiliares para armazenar soluções não-dominadas~(Conjunto de Pareto) encontradas durante a evolução da população. Para validar o desempenho e a eficiência do algoritmo MSFLPA proposto, cinco funções Zitzler-Deb-Thiele são utilizadas para comparar com dois algoritmos genéticos multi-objetivos bem conhecidos da literatura: NSGA-II e SPEA2. Os experimentos numéricos indicam que MSFLPA produz soluções bem espalhadas~(diversidade) e converge para a verdadeira fronteira de Pareto e verifica-se ser eficiente e competitivo para resolver problemas multiobjetivos. Após essa validação, o MSFLPA é usado para otimizar a alocação dos recursos e para resolver o problema de programação de uma rede de dutos e quando comparado com o NSGA-II e microAG, MSFLPA tem se mostrado uma nova alternativa eficaz para a solução de problemas multiobjetivos com mais de dois objetivos, como é o caso dos problemas de escalonamento de redes de dutos.