Abordagens de aprendizado ativo e profundo para síntese e classificação de imagens de enteroparasitos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Alves, Daniel Henrique Acorsi lattes
Orientador(a): Saito, Priscila Tiemi Maeda lattes
Banca de defesa: Saito, Priscila Tiemi Maeda lattes, Lopes, Fabrício Martins lattes, Papa, João Paulo lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Informática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/5168
Resumo: Avanços significativos na área de visão computacional têm sido impulsionados principalmente pelo uso de técnicas de aprendizado profundo por meio das redes neurais convolucionais. No entanto, uma das principais dificuldades na utilização de técnicas de aprendizado profundo é a disponibilidade de dados rotulados, indispensáveis quando se lida com aprendizado supervisionado para a tarefa de classificação. Outros problemas a serem considerados referem-se à: i-) escassez de dados, por exemplo, de imagens, dada a dificuldade de aquisição das mesmas em algumas aplicações; ii-) dificuldade de obtenção de imagens rotuladas por especialistas. Dessa forma, torna-se fundamental o desenvolvimento de mecanismos para obtenção de um conjunto maior de imagens, bem como seus respectivos rótulos. Algumas aplicações podem até apresentar uma quantidade razoável ou até mesmo grandes quantidades de imagens disponíveis, bem como alguns esforços têm sido realizados na tentativa de solucionar os problemas mencionados. No entanto, muitas das amostras do conjunto de imagens podem não ser representativas para o aprendizado, de acordo com o domínio de aplicação, bem como muitas das amostras consideradas no aprendizado podem ser redundantes e desnecessárias, impactando negativamente no desempenho do classificador. Além disso, quando se lida com um grande conjunto de dados e aplicações que exigem tempos de resposta interativos, o processo de classificação pode tornar-se ineficiente e inviável de ser realizado. Portanto, o presente trabalho apresenta a proposta de uma nova abordagem de aprendizado, de forma a obter sintetizadores de imagens e classificadores de padrões mais robustos. Para tanto, integra estratégias de aprendizado ativo nos processos de síntese (por meio do uso de Generative Adversarial Networks) e de classificação de imagens, gerando e selecionando imagens sintéticas informativas para o aprendizado do classificador. Além disso, investiga e propõe novas estratégias de aprendizado ativo, de forma a selecionar amostras mais informativas (baseadas em critérios de diversidade e incerteza). Para validação da abordagem de aprendizado proposta, experimentos foram realizados utilizando dados de enteroparasitos. Os resultados obtidos demonstram que a inclusão de estratégias de aprendizado ativo em diferentes etapas da abordagem proposta mostra-se promissora. As estratégias de aprendizado ativo possibilitam a seleção de amostras mais informativas para ambos os processos de síntese e de classificação das imagens.