Detecção de vazamentos em dados de fluxo de água com seleção e otimização automática de modelos

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Nascimento, Willian Muniz do lattes
Orientador(a): Gomes Junior, Luiz Celso lattes
Banca de defesa: Gomes Junior, Luiz Celso lattes, Depexe, Marcelo Dalcul lattes, Delgado, Myriam Regattieri de Biase da Silva lattes, Riella, Rodrigo Jardim lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/26307
Resumo: O gerenciamento adequado dos recursos hídricos é uma questão prioritária no mundo moderno. Um importante aspecto desta questão é a minimização de perdas na distribuição urbana de água. O monitoramento em tempo real do sistema de distribuição seguido da aplicação de técnicas para detecção de outliers no fluxo de água vem sendo uma alternativa efetiva para a redução desse índice. A identificação dos melhores modelos e parâmetros otimizados para a detecção é um desafio neste cenário complexo. Portanto, a área pode se beneficiar dos desenvolvimentos recentes de estratégias para seleção e ajuste de modelos, área também conhecida por Aprendizagem de Máquina Automatizada, do inglês Automated Machine Learning (AutoML). Este trabalho apresenta uma proposta de aplicação de técnicas de detecção de outliers e recursos de AutoML em dados de fluxo de água em 16 Zonas de Pressão do sistema de distribuição de água de Curitiba, estado do Paraná, Brasil. É aplicada uma ferramenta “off-the-shelf”de AutoML e realizada uma otimização automática de algoritmos específicos de detecção de outliers. Os experimentos conduzidos indicam que a combinação de AutoML com técnicas tradicionais de detecção de outliers é o direcionamento mais efetivo.