Map matching: uma análise de dados streaming de trajetórias de GPS no transporte público

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Martins, Tiago Stapenhorst lattes
Orientador(a): Kozievitch, Nádia Puchalski lattes
Banca de defesa: Rosa, Marcelo de Oliveira lattes, Sunye, Marcos Sfair lattes, Kozievitch, Nádia Puchalski lattes, Gadda, Tatiana Maria Cecy lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/30064
Resumo: Garantir um transporte público que supra as necessidades de uma população crescente é um desafio, especialmente em países em desenvolvimento onde os recursos e investimentos são limitados. Com o barateamento e a instalação de dispositivos de Internet of Things (IoT) como embarcados, sensores, Global Positioning System (GPS) em ônibus de transporte público uma grande quantidade de dados pode ser gerada e utilizada como base para tomadas de decisão. Entretanto se os dados forem afetados por erros e incertezas tais análises podem ser inválidas. Os dados abertos de movimentação dos ônibus de Curitiba é vasto mas apresentam inconsistências e não informam o horário de passagem dos ônibus nos pontos de ônibus. A grande quantidade de dados por si só será valiosa se processamentos e algoritmos extraiam o valor destes dados. Este trabalho tem como objetivo um método de quatro etapas para analisar os dados de Streaming de trajetórias de GPS, contendo 1) análise e limpeza dos dados; 2) extração de azimutes; 3) um método para detecção do momento (horário) de passagem dos ônibus nos respectivos pontos de ônibus de sua linha de operação e 4) correlação dos tempos reais e teóricos da passagem nos pontos de ônibus. O trabalho utiliza conceitos de Sistemas de Informação Geográficas, Cidades Inteligentes e Dados Abertos. Testes realizados em dados abertos de Streaming de trajetórias de GPS de transporte público de Curitiba ilustraram a eficiência da metodologia dos algoritmos propostos, além de indicar fatores para a melhoria dos dados.