Reconstrução de imagens de ultrassom utilizando regularização l1 através de mínimos quadrados iterativamente reponderados e gradiente conjugado
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/851 |
Resumo: | Este trabalho apresenta um método de reconstrução de imagens de ultrassom por problemas inversos que tem como penalidade para o erro entre solução e dados a norma L2, ou euclidiana, e como penalidade de regularização a norma L1. A motivação para o uso da regularização L1 é que se trata de um tipo de regularização promotora de esparsidade na solução. A esparsidade da regularização L1 contorna o problema de excesso do artefatos, observado em outras implementações de reconstrução por problemas inversos em ultrassom. Este problema é consequência principalmente da limitação da representação discreta do objeto contínuo no modelo de aquisição. Por conta desta limitação, objetos refletores na área imageada quase sempre localizam-se em posições que não correspondem precisamente a uma das posições do modelo discreto, gerando dados que não correspondem aos dados modelados. As formulações do problema com regularização L2 e com regularização L1 são apresentadas e comparadas dos pontos de vista geométrico e Bayesiano. O algoritmo de otimização proposto é uma implementação do algoritmo Iteratively Reweighted Least Squares (IRLS) e utiliza o método do Gradiente Conjugado (CG - Conjugate Gradient) a cada iteração, sendo chamado de IRLS-CG. São realizadas simulações com phantoms computacionais que mostram que o método permite reconstruir imagens a partir da aquisição de dados com refletores em posições não modeladas sem a observação de artefatos. As simulações também mostram melhor resolução espacial do método proposto com relação ao algoritmo delay-and-sum (DAS). Também se observou melhor desempenho computacional do CG com relação à matriz inversa nas iterações do IRLS. |