Avaliação de qualidade de vídeo utilizando modelo de atenção visual baseado em saliência
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/1169 |
Resumo: | A avaliação de qualidade de vídeo possui um papel fundamental no processamento de vídeo e em aplicações de comunicação. Uma métrica de qualidade de vídeo ideal deve garantir a alta correlação entre a predição da distorção do vídeo e a percepção de qualidade do Sistema Visual Humano. Este trabalho propõe o uso de modelos de atenção visual com abordagem bottom up baseados em saliências para avaliação de qualidade de vídeo. Três métricas objetivas de avaliação são propostas. O primeiro método é uma métrica com referência completa baseada na estrutura de similaridade. O segundo modelo é uma métrica sem referência baseada em uma modelagem sigmoidal com solução de mínimos quadrados que usa o algoritmo de Levenberg-Marquardt e extração de características espaço-temporais. E, a terceira métrica é análoga à segunda, porém usa a característica Blockiness na detecção de distorções de blocagem no vídeo. A abordagem bottom-up é utilizada para obter os mapas de saliências que são extraídos através de um modelo multiescala de background baseado na detecção de movimentos. Os resultados experimentais apresentam um aumento da eficiência de predição de qualidade de vídeo nas métricas que utilizam o modelo de saliência em comparação com as respectivas métricas que não usam este modelo, com destaque para as métricas sem referência propostas que apresentaram resultados melhores do que métricas com referência para algumas categorias de vídeos. |