Análise exploratória de dados espaciais aplicada a produtividade de milho no estado do Paraná

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Seffrin, Rodolfo lattes
Orientador(a): Araújo, Everton Coimbra de lattes
Banca de defesa: Araújo, Everton Coimbra de, Santos, José Airton Azevedo dos, Menezes, Paulo Lopes de, Grzegozewski, Denise Maria
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Medianeira
Programa de Pós-Graduação: Programa de Pós-Graduação em Tecnologias Computacionais para o Agronegócio
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2942
Resumo: A cultura do milho é uma das atividades agrícolas mais importantes para a economia no Brasil e a utilização de modelos estatísticos pode auxiliar a tomada de decisão neste setor produtivo. O presente estudo visou identificar áreas com correlação e autocorrelação espacial para a produtividade de milho e suas variáveis preditoras (temperatura média, precipitação pluvial, radiação solar, potencialidade agrícola do solo e altitude), e também, verificar o modelo de regressão espacial mais adequado para a explicação da cultura. O estudo foi realizado utilizando dados de municípios do estado do Paraná referente a safras de verão dos anos agrícolas de 2011/2012, 2012/2013 e 2013/2014. Os softwares utilizados para a análise estatística e geração dos mapas temáticos foram o ArcMap 9.3 e GeoDa 1.6.7. A identificação da dependência espacial entre as variáveis foi realizada por meio do índice de Moran Global (Univariado e Bivariado) e o índice local de associação espacial (LISA), concluindo-se que para todos os anos e critérios de vizinhança utilizados, houve autocorrelação espacial significativa ao nível de 1% para todas as variáveis. Verificouse ainda que a temperatura média, precipitação e altitude, estão correlacionadas significativamente (P-value<5%) com a produtividade do milho em todos os anos e critérios estudados. As variáveis: radiação solar e potencialidade agrícola do solo não apresentaram correlação significativa para alguns dos anos (2012/2013) e matrizes de vizinhança (contingência queen e vizinho mais próximo). Para determinar o modelo de regressão mais apropriado para a estimativa da produtividade de milho, foi adotado o diagnóstico estatístico do modelo de regressão OLS - Ordinary Least Square, que verifica se é necessário aplicar algum modelo de regressão espacial para explicação dos dados. Para todos anos agrícolas foi recomendado a utilização do modelo de regressão espacial SAR – Spatial Lag Model, sendo que apenas para o ano agrícola 2013/2014 pode ser recomendado o modelo Spatial Error Model (CAR). A regressão espacial (SAR e CAR) adotada para a estimativa da produtividade de milho em diferentes anos, obteve melhores resultados quando comparada com os resultados da regressão que não incorpora a autocorrelação espacial dos dados (OLS). O coeficiente de determinação R², os critérios de informação bayesiano (BIC) e o máximo valor do logaritmo da função verossimilhança (Log-likelihood), apresentou melhora significativa na estimação da produtividade do milho quando utilizado SAR e CAR.