Sistema inteligente para monitoramento e predição do estado clínico de pacientes baseado em lógica fuzzy e redes neurais

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Schatz, Cecilia Haydee Vallejos de
Orientador(a): Schneider, Fábio Kurt
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1022
Resumo: O conforto e a liberdade de movimentos de pacientes com doenças crônicas e que têm que ser continuamente monitorados é um tema que tem incentivado o desenvolvimento de novas tecnologias como as redes de sensores corporais sem fios (WBAN) e novas áreas de pesquisa como a telemedicina. Além disso, a incorporação de software inteligente que permite simular o raciocínio dos especialistas, auxiliá-los na tomada de decisões e detectar com antecedência condições anormais ou tendência ao desenvolvimento de determinadas doenças, abre um campo ainda maior de pesquisas, como o campo da Inteligência Artificial na Medicina (AIM). O monitoramento de pacientes por meio de equipamentos sem fios, em conjunto com a tecnologia AIM, permite desenvolver soluções práticas para monitorar pacientes sem descuidar de seu conforto. Nesta tese foram pesquisadas técnicas inteligentes para o desenvolvimento de uma aplicação que permita monitorar cinco sinais vitais de pacientes sem que eles precisem usar leitos hospitalares. Em uma primeira etapa, os procedimentos médicos tipicamente usados pelos especialistas para avaliar um paciente foram estudados e transformados em regras para o modelo fuzzy. O modelo fuzzy proposto permite analisar o estado clínico presente do paciente e criar as saídas desejadas (targets) que permitam treinar as redes neurais artificiais. Posteriormente foi desenvolvido um modelo neural que, analisando os dados atuais e saídas anteriores do paciente, permite prever o seu estado clínico futuro próximo. A fim de achar a metodologia mais exata, cinco redes neurais artificiais foram analisadas e comparadas umas às outras. As redes Elman MISO, Elman MIMO, e NNARX – totalmente conectadas e podadas – foram testadas. O modelo fuzzy teve um excelente resultado concordando com as respostas dadas pelos especialistas em 99,76% dos casos. Depois de analisar as redes propostas no conjunto de validação, os resultados revelaram que unicamente a rede NNARX podada pode oferecer a mais alta acurácia de 99,82%, enquanto os outros modelos degradam o seu desempenho em até 35%. As técnicas de parada antecipada para o treinamento junto com a obtenção de valores médios de MSE, FPE e coeficientes de correlação conseguiram obter as melhores topologias de cada tipo de rede, fazendo quase desnecessária a sua poda. As redes NNARX e P-NNARX conseguiram resultados bem melhores que as redes restantes, mas a acurácia na rede P-NNARX observou um aumento de 1,27% em relação à rede NNARX. Como conclusão, pode-se dizer que, para este caso particular, as redes NNARX capturam a essência do sistema dinâmico não linear muito melhor do que as redes Elman. Finalmente, a rede P-NNARX foi a escolhida para a implementação do sistema inteligente proposto nesta tese. A sua acurácia foi de 99,25% para uma predição no tempo (t + d), onde d = 1 segundo, utilizando os dados de 30 novos pacientes. Foram feitas mais provas com periodos de predição maiores e o sistema demostrou uma ligeira diminuição na acurácia, chegando a 94,58% para d = 60 segundos, mas ainda ficando na faixa dos 90%. Os resultados demonstram o alto nível de generalização do sistema e o excelente desempenho na predição dos três estados clínicos do paciente (estável, semiestável e instável). Pretende-se que este sistema inteligente possa ser usado como ferramenta para a medicina preventiva em pacientes crônicos.