Gaussian Adaptive PID control with robust parameters considering plant parameter variation with optimization based on bioinspired metaheuristics
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Ponta Grossa |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/4880 |
Resumo: | O objetivo deste trabalho é comparar um PID linear ao controle PID Adaptativo Gaussiano (GAPID) quanto à sua robustez a mudanças e variações em duas plantas diferentes. A primeira é o conversor DC-DC Buck de segunda ordem utilizado como planta de estudo e analisado por simulação. A segunda planta é um motor de corrente contínua com uma viga ligada a ele. Um protótipo experimental foi construído para esta segunda planta para testar o GAPID em um experimento real. A função gaussiana tem ganhos de limite inferior e superior e concavidade como parâmetros. É uma função suave com derivadas suaves. Como resultado, ajuda a evitar problemas relacionados à transição abrupta de ganhos, comumente encontrados em outros métodos adaptativos. Como não há metodologia matemática para definir esses parâmetros, foram utilizados dois algoritmos de otimização bio-inspirados, o Algoritmo Genético (GA) e o por Enxame de Partículas (PSO). Funções para avaliar os resultados, chamadas de funções de adequação (fitness), são necessárias para os algoritmos e também foram usadas como comparação de desempenho. Uma nova variação para a função fitness é proposta e os resultados provam uma melhoria em relação ao overshoot. Os resultados também comprovam a robustez do GAPID em relação ao PID linear por testes de varredura de carga e ganho, obtendo resposta rápida (baixo tempo de estabilização) e variação mínima, o que não é possível atingir usando o PID linear. |