Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/308 |
Resumo: | Este trabalho propõe uma modificação da meta-heurística Busca Harmônica (HS) a partir de uma nova abordagem baseada em população, empregando, também, algumas estratégias inspiradas em outras meta-heurísticas. Este novo modelo foi implementado utilizando a arquitetura de programação paralela CUDA em uma GPU. O uso de placas de processamento gráficas (GPU) para processamento de propósito geral está crescendo, e estas têm sido utilizadas por muitos pesquisadores para processamento científico. Seu uso se mostra interessante para meta-heurísticas populacionais, podendo realizar muitas operações simultaneamente. A HS é uma meta-heurística inspirada no objetivo de um músico em buscar uma harmonia perfeita. modelo proposto incluiu-se uma população de harmonias temporárias que são geradas a cada nova iteração, permitindo a realização simultânea de diversas avaliações de função. Assim aumenta-se o grau de paralelismo da HS, possibilitando maiores ganhos de velocidade com o uso de arquiteturas paralelas. O novo modelo proposto executado em GPU foi denominado Mega Harmony Search (MHS). Na implementação em GPU cada passo do algoritmo é tratado individualmente em forma de kernels com configurações particulares para cada um. Para demonstrar a eficácia do modelo proposto foram selecionados alguns problemas de benchmark, como a otimização de estruturas de proteínas, a otimização de treliças e problemas matemáticos. Através de experimentos fatoriais foi identificado um conjunto de parâmetros padrão, o qual foi utilizado nos outros experimentos. As análises realizadas sobre resultados experimentais mostram que o MHS apresentou solução de qualidade equivalente à HS e ganhos de velocidade, com a sua execução em GPU, superiores a 60x quando comparado a implementação em CPU. Em trabalhos futuros poderão ser estudadas novas modificações ao algoritmo, como a implementação de nichos e estudos de estratégias de interação entre eles. |