Classificação de falhas em maquinas eletricas usando redes neurais, modelos wavelet e medidas de informação
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Cornelio Procopio |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/1201 |
Resumo: | Este trabalho apresenta uma proposta de metodologia para detecção e classificação de falhas em motores de indução trifásicos ligados diretamente à rede elétrica. O método proposto é baseado na análise dos sinais de corrente do estator, com e sem a presença de falhas nos rolamentos, estator e rotor. Um dos efeitos desses tipos de falhas é o aparecimento de componentes de frequência específicas, relacionados à velocidade de rotação da máquina. Os sinais foram analisados usando a decomposição wavelet-packet, que permite a avaliação dos sinais em bandas de frequência de tamanhos variáveis. A partir dessa decomposição, aplicaram-se medidas de previsibilidade, como entropia relativa, potência de previsão e variância de erro normalizada, obtida com a análise de componentes previsíveis. Com essas medidas, foi possível verificar quais componentes da decomposição são mais previsíveis. Neste trabalho, a variância de erro normalizada e a potência de previsão foram utilizadas como entradas para três topologias de redes neurais artificiais classificadoras: perceptron multicamadas, redes de funções de base radial e mapas auto-organizáveis de Kohonen. Foram testados seis diferentes vetores de entrada para as redes neurais, utilizando medidas de previsibilidade e número de elementos dos vetores variados. Os ensaios foram realizados considerando amostras de sinal de diferentes motores, com vários tipos de falha, operando sob diversos regimes de torque e condições de desequilíbrio de tensão. Primeiramente, os sinais foram classificados em dois padrões: com e sem a presença de falhas. Posteriormente, detectou-se o tipo de falha presente nos sinais: rolamento, estator ou rotor. Por último, as amostras foram classificadas dentro do subgrupo de falha em que estavam presentes. |