Interpretabilidade com agregação de relevância em redes neurais para a predição do absenteísmo

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Gomes Junior, Julio Marcos lattes
Orientador(a): Lopes, Fabricio Martins lattes
Banca de defesa: Lopes, Fabricio Martins lattes, Bugatti, Pedro Henrique lattes, Saito, Priscila Tiemi Maeda lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Informática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/30199
Resumo: A falta de assiduidade dos funcionários é chamada de absenteísmo e ocorre por vários motivos, como atividade física vigorosa, idade avançada e altas demandas psicológicas no trabalho. O absenteísmo afeta os custos diretos e indiretos das empresas, podendo chegar a 15% da folha de pagamento. Portanto, é fundamental conhecer suas principais causas e contribuir para estratégias de controle e mitigação. As redes neurais foram aplicadas com sucesso na classificação de vários problemas, mas são caixas pretas, dado que não explicam quais aspectos são considerados em suas decisões. Estes aspectos são muito importantes em aplicações de saúde, nas quais é necessário explicar e interpretar claramente os resultados. Neste contexto, este trabalho apresenta uma abordagem para classificar o absenteísmo com redes neurais, propagação de relevância em camadas (LRP) e agregação de relevância para identificar as características mais relevantes e atribuir pontuações de relevância individualmente por classe e entre todas as classes. A abordagem proposta foi avaliada considerando um conjunto de dados amplamente utilizado como referência e comparando com métodos existentes na literatura. A abordagem proposta apresentou maior taxa de assertividade entre os métodos comparados, com precisão média de 0,83, identificando as características mais relevantes para a classificação do absenteísmo por meio de uma pontuação de relevância e foi possível reduzir as características do conjunto de dados em 75% sem perda significativa na taxa de assertividade. Portanto, os resultados permitem a interpretabilidade das causas de cada classe de absenteísmo e a redução de dimensionalidade do espaço de características, que contribuem para a gestão de recursos humanos, medicina do trabalho e o desenvolvimento de estratégias para a sua mitigação.