Controle, supervisão e suporte à tomada de decisões em processos avícolas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Schmidt, Lucas lattes
Orientador(a): Teixeira, Marcelo lattes
Banca de defesa: Teixeira, Marcelo, Bertotti, Fabio Luiz, Ribeiro, Richardson, Zalewski, Willian, Casanova, Dalcimar
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Pato Branco
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/3252
Resumo: A produção de frangos de corte vem assumindo papel de grande importância socioeconômica para o Brasil. Para o sucesso no desenvolvimento das aves, é fundamental um controle adequado de temperatura e umidade no interior do aviário, uma vez que o conforto térmico define a relação entre o consumo de ração e a produção de carne. Os métodos atuais de controle, comumente utilizados nos aviários brasileiros, não apresentam a eficiência desejável. Apesar de existirem dispositivos semiautomáticos, esses são dependentes da percepção e da intervenção do especialista humano, o que tende a ser ineficiente e propenso a erros. Esta pesquisa propõe uma abordagem integrada de controle, supervisão e suporte à tomada de decisões para aplicação no manejo avícola. Serão analisadas duas abordagens de controle apresentadas na literatura e então será proposta uma abordagem híbrida de integração. A primeira apresenta um controlador baseado na Teoria de Controle Supervisório (TCS), capaz de observar o conjunto de eventos da planta e orquestrar os atuadores de maneira minimamente restritiva, controlável, não bloqueante e de acordo com um conjunto de especificações. A segunda trata de um modelo de aprendizagem de máquina que, através de uma Rede Neuronal Artificial (RNA), fornece planos de ação para o manejo avícola, priorizando o bem-estar das aves e a produtividade. As duas abordagens serão examinadas e em seguida integradas, fornecendo ao operador três opções de gerenciamento do processo: controle puramente lógico (TCS); controle através da estratégia de inteligência artificial (RNA); e o controle lógico integrado aos planos de ação fornecidos pelo sistema especialista. Vencida a etapa de integração, é simulada uma situação real de manejo, e obtidas as respostas para as três opções de controle. Finalmente é apresentada uma análise comparativa entre os resultados obtidos por meio de cada abordagem.