Modelagem, integração e análise exploratória de dados públicos de mirtrons

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fonseca, Bruno Henrique Ribeiro da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Brasil
Programa de Pós-Graduação em Bioinformática
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/4507
Resumo: MicroRNAs (miRNAs) are the most studied non-coding RNA class in literature. This small ncRNA class acts in cellular control of several biological processes, through its post-transcriptional regulatory role in messenger RNA levels. Overall, to miRNAs become matures and able to perform their regulatory function, two cleavages must occur in their canonical biogenesis. Studies in Drosophila melanogaster and Caenorhabditis elegans have described a miRNA subclass that uses an alternative way to their biogenesis first stage, and they were called mirtrons. The mirtrons use the splicing process as an alternative to the first cleavage and then proceed in the canonical biogenic process. Mirtrons are located in small introns and associated with several regulatory processes, such as the potential diseases genes silencer in vertebrates and regulators in the photosynthesis process in plants. Although there are several studies about mirtrons, their data is available in a dispersed way, without any organization or repository to query. Differentiating comparatively miRNAs and mirtrons allows advances in computational biology that supporting biological studies in ncRNAs. Thus, this paper presents two main contributions: (i) to develop a friendly repository of public mirtrons data; and (ii) perform exploratory analysis to compare and investigate features capable of distinguishing mirtrons from miRNAs. These contributions allow a new layer to the understanding about mirtrons and miRNAs research.