Um novo algoritmo de granulometria com aplicação em caracterização de nanoestruturas de silício.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Maruta, Ricardo Hitoshi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3140/tde-12122011-145321/
Resumo: Granulometria é o processo usado para medir objetos de diferentes tamanhos em imagens de material granular. Frequentemente algoritmos baseados em morfologia matemática ou detecção de arestas são utilizados para esta finalidade. Propomos uma nova abordagem para a granulometria utilizando correlações cruzadas com círculos de tamanhos diferentes. Esta técnica é primeiramente adequada para a detecção de objetos de formato circular, mas pode ser estendido para outras formas utilizando outros núcleos (kernels) de correlação. Experimentos mostram que o novo algoritmo é robusto ao ruído e pode detectar objetos com pouco contraste e/ou com sobreposição parcial. Este trabalho também apresenta características quantitativas estruturais da camada de silício poroso, obtidas aplicando o algoritmo proposto em imagens de microscopia eletrônica de varredura (MEV). O novo algoritmo, que chamamos Granul, calcula as áreas e frequências dos poros. Processamentos adicionais utilizando outros algoritmos classificam os poros em circulares ou quadrados. Relacionamos os resultados quantitativos obtidos com o processo de fabricação e discutimos o mecanismo de formação do poro quadrado no silício. O novo algoritmo mostrou-se confiável no processamento de imagens de MEV e é uma ferramenta promissora para controle no processo de formação dos poros.