Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Oliveira, Juliano Ribeiro de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12052008-095753/
|
Resumo: |
Estamos interessados em estudar o comportamento assintótico das soluções de uma classe de Equações Diferenciais Funcionais (EDF) lineares e autônomas do tipo neutro, onde os coeficientes, na parte não neutra, são funções periódicas de período comum w! e os retardamentos são múltiplos de w. Para isto, utilizamo-nos da teoria espectral de operadores aplicada ao chamado operador monodrômico \'PI\' : C \'SETA\' C, cuja ação é evoluir um dado estado um passo de tamanho w. Calculamos o resolvente deste operador, donde inferimos todas as propriedades espectrais que nos permitem determinar o comportamento assintótico das soluções. Mostramos a importância de se determinar autovalores dominantes para a obtenção das estimativas, e mostramos resultados neste sentido. Estudamos em detalhe três exemplos que ilustram a teoria e demonstram sua aplicabilidade |