Comportamento assintótico para soluções de certas equações diferenciais funcionais periódicas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Oliveira, Juliano Ribeiro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12052008-095753/
Resumo: Estamos interessados em estudar o comportamento assintótico das soluções de uma classe de Equações Diferenciais Funcionais (EDF) lineares e autônomas do tipo neutro, onde os coeficientes, na parte não neutra, são funções periódicas de período comum w! e os retardamentos são múltiplos de w. Para isto, utilizamo-nos da teoria espectral de operadores aplicada ao chamado operador monodrômico \'PI\' : C \'SETA\' C, cuja ação é evoluir um dado estado um passo de tamanho w. Calculamos o resolvente deste operador, donde inferimos todas as propriedades espectrais que nos permitem determinar o comportamento assintótico das soluções. Mostramos a importância de se determinar autovalores dominantes para a obtenção das estimativas, e mostramos resultados neste sentido. Estudamos em detalhe três exemplos que ilustram a teoria e demonstram sua aplicabilidade