Uso do histórico, presente e contexto da paisagem na discriminação de florestas jovens em restauração ativa e regeneração natural

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Aguiar, Nathália Virgínia Veloso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11150/tde-03012023-100757/
Resumo: O aumento da cobertura por florestas jovens no Estado de São Paulo é resultado de diferentes processos naturais e antrópicos como regeneração natural e restauração ativa. Identificar com precisão o método de restauração e a dinâmica dessas manchas de florestas jovens são cruciais para compreender sua distribuição espacial, estrutura, funcionamento e contribuição nos processos ecológicos e fornecer mecanismos de monitoramento, garantir a persistência dessas áreas no futuro. O estudo e refinamento da classificação das florestas com base nos métodos de restauração possui ainda muitos desafios. O presente trabalho buscou responder uma pergunta crucial para este cenário: \'Como distinguir florestas secundárias em áreas de restauradas ativamente e regeneradas passivamente?\'. Para tanto, o objetivo deste estudo foi combinar dados de contexto da paisagem, do comportamento espectral atual e histórico da vegetação, para distinguir dentre as áreas de florestas secundárias o método de restauração - regeneração natural e restauração ativa - usando classificadores não-supervisionados. A área de estudo são as Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí, Bioma Mata Atlântica, localizada no Estado de São Paulo, Brasil. O primeiro conjunto de dados para estudo do contexto da paisagem utilizou variáveis biofísicas de declividade, proximidade a hidrografia e estatística focal da vegetação primária em um buffer de 300 metros de cada área de floresta jovem estudada. O segundo conjunto de variáveis para estudo do comportamento espectral atual foi formado por quatro índices de vegetação com leituras observadas nos períodos chuvosos e secos. O terceiro conjunto de variáveis para estudo do histórico do comportamento espectral da vegetação é composto por dados de tendência, magnitude, anomalias, sazonalidade, média de NDVI e variação interanual, decompostos das séries temporais de cada área. A Análise dos Componentes Principais realizada sobre esse conjunto de variáveis mostrou que as variáveis do comportamento espectral atual e histórico da vegetação são responsáveis por explicar 65% das áreas de restauração e regeneração, nos três primeiros componentes principais (CP), enquanto as variáveis de contexto, para essas áreas e bacia em específico, explicou apenas 6%, estando presente apenas no quarto CP. O conjunto de amostras, 170 áreas de restauração ativa e 170 áreas de regeneração natural e foram treinados quatro classificadores baseados em algoritmos de aprendizado de máquina XGB Boost, Gradient Boosting, Bagging Classifier e Linear Discriminant Analysis. O classificador XGBoost obteve acurácia de 88%, enquanto os algoritmos Gradient Boosting e Linear Discriminant Analysis obtiveram menores acurácia com 84%. Este trabalho demonstrou que é possível distinguir áreas de floresta secundária em diferentes métodos de restauração usando variáveis de comportamento espectral atual e histórico, com acurácia satisfatória, no contexto de bacias com particularidades e características semelhantes às bacias hidrográficas dos rios Piracicaba, Capivari e Jundiaí.