MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Kashiwabara, André Yoshiaki
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042012-184145/
Resumo: O desafio de encontrar corretamente genes eucarioticos codificadores de proteinas nas sequencias genomicas e um problema em aberto. Neste trabalho, implementamos uma plata- forma, com o objetivo de melhorar a forma com que preditores de genes sao implementados e avaliados. Tres novas ferramentas foram implementadas: ToPS (Toolkit of Probabilistic Models of Sequences) foi o primeiro arcabouco orientado a objetos que fornece ferramentas para implementacao, manipulacao, e combinacao de modelos probabilisticos para representar sequencias de simbolos; MYOP (Make Your Own Predictor) e um sistema que tem como objetivo facilitar a construcao de preditores de genes; e SGEval utiliza grafos de splicing para comparar diferente anotacoes com eventos de splicing alternativos. Utilizamos nossas ferramentas para o desenvolvimentos de preditores de genes em onze genomas distintos: A. thaliana, C. elegans, Z. mays, P. falciparum, D. melanogaster, D. rerio, M. musculus, R. norvegicus, O. sativa, G. max e H. sapiens. Com esse desenvolvimento, estabelecemos um protocolo para implementacao de novos preditores. Alem disso, utilizando a nossa plata- forma, desenvolvemos um fluxo de trabalho para predicao de genes no projeto do genoma da cana de acucar, que ja foi utilizado em 109 sequencias de BAC geradas pelo BIOEN (FAPESP Bioenergy Program).