Modelagem para probabilidade de frutificação em café Arábica baseado em ocupação de metâmeros

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Barros, Luiza Yoko de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-03082017-115336/
Resumo: Este é um trabalho proveniente de vários encontros com pesquisadores da Embrapa de Campinas, cujo objetivo principal se centrou em investigar a probabilidade de frutificação em árvores de Café Arábica. Para isso foram analisados 20 bancos de dados para árvores de Café Arábica de um cultivar localizado no Instituto Agronômico do Paraná em dois momentos distintos (Junho de 2010 e em Novembro - Dezembro de 2010) e consideradas as seguintes variáveis: \"OCUPAÇÃO\" (quadrática ou retangular), \"ESPAÇAMENTO\" (6.000 plantas/ha e 10.000 plantas/ha) ambas relativas ao cultivo das plantas e \"TAMANHO DO ENTRENÓ\" (medição em cm de uma partição definida da planta). Na busca de um modelo representativo de tal fenômeno, foram estudadas paralelamente tópicos relativos a alometria e assimetria dessas mesmas plantas, os quais permitiram modelar determinadas associações entre algumas estruturas como largura e comprimento de folhas. Os modelos ajustados apresentaram uma grande significância para a variável \"ESPAÇAMENTO\" nos dois tempos estudados, enquanto que a variável \"OCUPAÇÃO\" foi significativa apenas no segundo tempo e variável \"TAMANHO DO ENTRENÓ\" não foi significativa para nenhum dos tempos. A metodologia adotada para investigar essa probabilidade se deu através dos modelos de regressão logístico. Com o intuito de agregar a variável \"TEMPO\", juntou-se os dois bancos de dados em diferentes tempos e, baseado na metodologia de modelos mistos, obteve-se um modelo ajustado com retas paralelas, onde apenas a variável \"ESPAÇAMENTO\" foi considerada significativa.