Predictive adaptive cruise control in an embedded environment.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Brugnolli, Mateus Mussi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-24092018-151311/
Resumo: The development of Advanced Driving Assistance Systems (ADAS) produces comfort and safety through the application of several control theories. One of these systems is the Adaptive Cruise Control (ACC). In this work, a distribution of two control loops of such system is developed for an embedded application to a vehicle. The vehicle model was estimated using the system identification theory. An outer loop control manages the radar data to compute a suitable cruise speed, and an inner loop control aims for the vehicle to reach the cruise speed given a desired performance. For the inner loop, it is used two different approaches of model predictive control: a finite horizon prediction control, known as MPC, and an infinite horizon prediction control, known as IHMPC. Both controllers were embedded in a microcontroller able to communicate directly with the electronic unit of the vehicle. This work validates its controllers using simulations with varying systems and practical experiments with the aid of a dynamometer. Both predictive controllers had a satisfactory performance, providing safety to the passengers.