Um modelo de previsão de inadimplência & a relevância das informações contábeis na concessão de crédito a empresas

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Paula, Bruno Costa de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/92/92131/tde-05082022-160027/
Resumo: A demanda por ferramentas quantitativas capazes de avaliar o risco de inadimplência é muito grande. Suas aplicações nas instituições financeiras são cada vez mais freqüentes. Muitas destas ferramentas utilizam informações financeiro-contábeis dos contratantes dos produtos de crédito. O objetivo deste estudo é propor um modelo de previsão de inadimplência de empresas, que estime a probabilidade de ocorrência da inadimplência, evento chamado de default. O modelo estatístico adotado, regressão logística, utiliza informações contábeis das empresas na análise para concessão do crédito. Pretende-se analisar a contribuição do uso de índices financeiro contábeis no desenvolvimento de modelos de risco de crédito. Dois segmentos de clientes são focados neste trabalho: . Firmas com faturamento superior a R$ 100 milhões, que chamaremos de \"Grandes Empresas\" . Firmas com faturamento entre R$ 10 e R$ 100 milhões, que chamaremos de \"Empresas\". A partir dos dados financeiro-contábeis destas empresas, serão calculados determinados índices financeiros. Os índices financeiros são relações entre contas ou grupos de contas das demonstrações financeiras, que têm como objetivo fornecer-nos informações que não são facilmente observáveis de forma direta nos balanços das empresas. Com base na função de escore gerada pela regressão que relaciona os índices financeiros, apresentamos a aplicação da ferramenta e seu uso na análise pré-posteriori, através do Método Bayesiano, construindo um processo indutivo de ganho de conhecimento para o cálculo da probabilidade, ou risco, de inadimplência. Percebemos que para Médias e Pequenas Empresas há a necessidade de incorporação de outras variáveis além das financeiras. Já para o segmento de Grandes Empresas, o modelo de predição apresenta bom desempenho.