Análise e reconhecimento da forma tripomastigota de Trypanosoma cruzi para parasitemia automatizada em imagens com baixa densidade de pontos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Silva, Diogo Matos da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
SVM
Link de acesso: https://www.teses.usp.br/teses/disponiveis/95/95131/tde-14122020-180409/
Resumo: A detecção de parasitas no sangue periférico é prova definitiva de infecção de Trypanosoma cruzi em vertebrados. O acompanhamento da parasitemia de T. cruzi em camundongos infectados é necessário tanto para a manutenção da cepa estudada em animais no laboratório, quanto para se inferir a modulação da infecção por diferentes tratamentos. A análise de amostras por esfregaço sanguíneo é utilizada para estudos morfométricos, mas apresenta baixa sensibilidade quando utilizada para parasitemia manual. É preferível que a contagem seja realizada de forma automatizada com máxima sensibilidade, em menor intervalo de tempo e com menores custos. Técnicas de processamento de imagens e reconhecimento de padrões já vêm sendo utilizadas em micrografias digitais com boa resolução para impressão, a partir de 300 ppp (pontos por polegada). Propomos a aplicação dessas técnicas em imagens com baixa densidade de pontos por polegada para parasitemia da cepa Y de T. cruzi, na forma tripomastigota. Analisamos microgafias de esfregaço sanguíneo coradas com Giemsa que foram obtidas com câmeras de dispositivos móveis. As câmeras desses aparelhos são capazes de capturar imagens com 72 ppp em uma área de 4000x3000 pixels, ou 12 megapixels. Realizamos a extração de um conjunto de descritores composto por medidas geométricas, de curvatura e de cor e textura do cinetoplasto e do núcleo de 2304 parasitos. Os descritores extraídos foram separados em conjuntos de treinamento e de teste e classificados com SVM. Os resultados de precisão, sensibilidade, especificidade e área ROC do método proposto foram de 91,4%, 91,7%, 97,9% e 94,5%, respectivamente. Nossos resultados demonstram que a automatização da análise de imagens com baixa densidade de ppp é uma alternativa viável para a redução de custos e ganho de eficiência na utilização do microscópio ótico.