Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Dias, Cleber Gustavo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-15092006-165225/
|
Resumo: |
O estudo das condições de operação de um motor de indução em um ambiente industrial é indispensável, tendo em vista que eventuais problemas podem contribuir para um prejuízo na produção, ou ainda para custos adicionais relacionados à falta de manutenção dos equipamentos. Uma das principais falhas que podem ocorrer em um motor de indução do tipo gaiola de esquilo durante sua operação é o rompimento de uma ou mais barras que compõem o seu rotor. Apresenta-se neste trabalho um novo método para auxiliar na detecção de barras quebradas em um rotor tipo gaiola de esquilo, para um motor de grande porte, durante sua operação em regime permanente. A partir de um modelo matemático foi possível avaliar o rompimento de barras do rotor, detectando em uma posição específica, a variação da densidade de fluxo magnético resultante, produzida pela contribuição do fluxo de dispersão de cada barra do rotor, bem como pelo fluxo criado pelas correntes do estator. Um sensor de efeito Hall é instalado entre duas bobinas do estator, a fim de representar a posição onde é realizado o cálculo da densidade de fluxo magnético resultante pela modelagem matemática proposta. O sinal gerado pelo sensor a partir de uma falha é comparado com aquele obtido a partir do rotor saudável, para posterior análise. O trabalho sugere ainda a aplicação do método de detecção da falha em conjunto com uma técnica de inteligência artificial baseada nas redes neurais artificiais, a fim de contribuir para o diagnóstico da falha e estimativa do número de barras rompidas. Os resultados obtidos da simulação, bem como os dados obtidos durante o ensaio são apresentados e usados na validação do modelo matemático desenvolvido. |