Ano de defesa: |
2008 |
Autor(a) principal: |
Menezes, Marlim Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-10112008-113506/
|
Resumo: |
Este trabalho apresenta o desenvolvimento de algoritmos para determinação da estimativa da distância de ocorrência de falta em uma linha de transmissão de alta tensão, em relação a um terminal local, e também a classificação do tipo de falta, utilizando técnicas baseadas em redes neurais artificiais. Os testes e a validação dos algoritmos propostos são feitos a partir de dados simulados para os fasores de tensão e corrente, em regime permanente, com uso da linguagem MATLAB. Os fasores são obtidos com uso de cálculo tradicional de curto e parâmetros reais de uma linha de transmissão conhecida. Em casos reais os fasores seriam obtidos de amostras de tensões e correntes detectadas por dispositivos de proteção localizados nos terminais local e remoto da linha de transmissão em análise. As simulações das redes neurais para a classificação do tipo de falta e para a obtenção da estimativa da distância de falta foram feitas com duas rotinas escritas em MATLAB levando em consideração erros de medição dos fasores. Os resultados obtidos permitem avaliar a eficiência e a precisão dos algoritmos propostos em relação aos já existentes e conhecidos na literatura, e que usam somente equacionamento elétrico. |
---|