Método de avaliação de qualidade de vídeo por otimização condicionada.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Begazo, Dante Coaquira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-09032018-152946/
Resumo: Esta Tese propõe duas métricas objetivas para avaliar a percepção de qualidade de vídeos sujeitos a degradações de transmissão em uma rede de pacotes. A primeira métrica usa apenas o vídeo degradado, enquanto que a segunda usa os vídeos de referência e degradado. Esta última é uma métrica de referência completa (FR - Full Reference) chamada de QCM (Quadratic Combinational Metric) e a primeira é uma métrica sem referência (NR - No Reference) chamada de VQOM (Viewing Quality Objective Metric). Em particular, o procedimento de projeto é aplicado à degradação de variação de atraso de pacotes (PDV - Packet Delay Variation). A métrica NR é descrita por uma spline cúbica composta por dois polinômios cúbicos que se encontram suavemente num ponto chamado de nó. Para o projeto de ambas métricas, colhem-se opiniões de observadores a respeito das sequências de vídeo degradadas que compõem o conjunto. A função objetiva inclui o erro quadrático total entre as opiniões e suas estimativas paramétricas, ainda consideradas como expressões algébricas. Acrescentam-se à função objetiva três condições de igualdades de derivadas tomadas no nó, cuja posição é especificada dentro de uma grade fina de pontos entre o valor mínimo e o valor máximo do fator de degradação. Essas condições são afetadas por multiplicadores de Lagrange e adicionadas à função objetiva, obtendo-se o lagrangiano, que é minimizado pela determinação dos coeficientes subótimos dos polinômios em função de cada valor do nó na grade. Finalmente escolhe-se o valor do nó que produz o erro quadrático mínimo, determinando assim os valores finais para dos coeficientes do polinômio. Por outro lado, a métrica FR é uma combinação não-linear de duas métricas populares, a PSNR (Peak Signal-to-Noise Ratio) e a SSIM (Structural Similarity Index). Um polinômio completo de segundo grau de duas variáveis é usado para realizar a combinação, porque é sensível a ambas métricas constituintes, evitando o sobreajuste em decorrência do baixo grau. Na fase de treinamento, o conjunto de valores dos coeficientes do polinômio é determinado através da minimização do erro quadrático médio para as opiniões sobre a base de dados de treino. Ambas métricas, a VQOM e a QCM, são treinadas e validadas usando uma base de dados, e testadas com outra independente. Os resultados de teste são comparados com métricas NR e FR recentes através de coeficientes de correlação, obtendo-se resultados favoráveis para as métricas propostas.