Um estudo de simulação para comparação entre métodos de cálculo do número aproximado de graus de liberdade da estatística F em dados desbalanceados

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Hilário, Andréia Pereira Maria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042015-140800/
Resumo: O desbalanceamento de dados em experimentos está muitas vezes presente em diversas pesquisas nas mais variadas áreas do conhecimento. Embora existam muitas maneiras de análise de tais dados, além de diversos recursos computacionais já implementados em diversos softwares estatísticos, ainda perdura dúvidas entre os pesquisadores a respeito da opção de análise mais eficiente. A literatura fornece ao pesquisador direção na escolha da metodologia de análise a obter maior eficácia nos resultados de sua pesquisa, mas o número elevado de opções pode tornar a escolha difícil. Em se tratando de testes estatísticos, algumas das opções para se trabalhar com dados desbalanceados são os testes t e Wald-F, mas ainda resta ao pesquisador decidir entre as várias opções disponíveis nos pacotes, pois nem sempre as opções padrões são as mais indicadas. No presente trabalho foram realizadas simulações com diferentes cenários experimentais, utilizando-se o delineamento casualizado em blocos com um fator de tratamento em uma situação e o esquema de tratamentos em parcelas subdividas em outra, sendo comparados quatro métodos de cálculo do número aproximado de graus de liberdade (Containment, Residual, Satterthwaite e Kenward-Roger). Verificou-se que o método de Kenward-Roger controla de maneira mais eficiente a taxa de erro tipo I e não é inferior aos outros métodos com respeito ao poder do teste Wald-F.