Análises da variância e da covariância linear de dados de uma classificação dupla não balanceada

Detalhes bibliográficos
Ano de defesa: 1982
Autor(a) principal: Machado, Amauri de Almeida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20231122-100358/
Resumo: O objetivo do presente trabalho é estabelecer uma teoria para as análises da variância e da covariância em classificações duplas não balanceadas. Para tanto utilizou-se o Método do Ajustamento de Constante, introduzido por YATES (1934), como gerador de estimativas e somas de quadrados. O modelo linear básico é: (Descrito na Dissertação) onde ϒij representa a interação entre os níveis dos fatores A e B. Entretanto, para maior facilidade nas deduções teóricas, utilizou-se o modelo sem interação, ou seja: (Descrito na Dissertação) ou, na forma matricial, (Descrito na Dissertação). Mesmo assim, além de um estudo completo acerca dos testes de significância para os efeitos principais e para a regressão, é apresentado, ainda, um procedimento no sentido de verificar a significância da interação. As principais conclusões deste trabalho são: a) nos casos onde a interação não está presente no modelo o teste de significância para os efeitos principais é um teste exato; b) a presença da interação no modelo dificulta sobremaneira a interpretação das hipóteses, além de tornar aproximados os testes para os efeitos principais; c) as hipóteses devem ser formuladas, preferentemente, em termos de funções lineares estimáveis. Caso contrário, deverão ser associadas à essas funções as restrições não estimáveis que possibilitaram expressá-la como tal.