Simulação numérica de difusores tangenciais com modelo de tensões de Reynolds.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Sartori, Rafael de Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3150/tde-10072014-165748/
Resumo: Difusores de ar é um tema de particular interesse na indústria dos sistemas de ar condicionado e climatização. O difusor swirl (ou tangencial) é um tipo de difusor já utilizado em alguns ambientes climatizados. O seu comportamento é mais conhecido em aplicações no campo da combustão, mas, em aplicações de sistemas de ar condicionado o Número de Reynolds é bem menor, não há a combustão e as condições de contorno são diferentes. Além disso, têm-se poucos estudos voltados para estes difusores num domínio 3D. Com esta motivação, o presente trabalho apresenta as simulações de um difusor tangencial em vazões típicas de aplicações de conforto térmico personalizado, utilizando a modelo de turbulência Reynolds Stress em um domínio 3D. Algumas simulações em um domínio 2D são realizadas a fim de se obter algumas características essenciais do escoamento, como abertura e comprimento do jato. Porém, comparados ao experimento, os resultados 2D precisam ser melhorados. Esquemas de discretização de maior ordem são utilizados para se avaliar o desempenho. Nas simulações no domínio 3D, verifica-se que um resultado melhor é alcançado quando se refina a malha na região central do jato, logo abaixo do difusor. Dois métodos de especificação da condição de contorno de entrada são estudados: o primeiro consiste em utilizar os dados experimentais obtidos na saída do difusor para simular o escoamento sem a geometria do difusor e o segundo simula o difusor completo, aplicando a magnitude da velocidade perpendicularmente à superfície de entrada com base na vazão calculada pelos dados do experimento do PIV (Particle Image Velocimetry). Os resultados numéricos são comparados com o experimento. Verifica-se que o método de simulação sem o difusor apresenta resultados mais precisos com relação ao experimento e apresenta maiores vantagens na simulação numérica.