Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Bertoni, Fabiana Cristina |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18153/tde-11122007-104053/
|
Resumo: |
Os sistemas baseados em redes neurais artificiais e algoritmos genéticos oferecem um método alternativo para solucionar problemas relacionados à otimização de sistemas. Os algoritmos genéticos devem a sua popularidade à possibilidade de percorrer espaços de busca não-lineares e extensos. As redes neurais artificiais possuem altas taxas de processamento por utilizarem um número elevado de elementos processadores simples com alta conectividade entre si. Redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver vários tipos de problemas de otimização, os quais consistem, geralmente, da otimização de uma função objetivo que pode estar sujeita ou não a um conjunto de restrições. Esta tese apresenta uma abordagem inovadora para resolver problemas de otimização não-linear restrita utilizando uma arquitetura neuro-genética. Mais especificamente, uma rede neural de Hopfield modificada é associada a um algoritmo genético visando garantir a convergência da rede em direção aos pontos de equilíbrio factíveis que representam as soluções para o problema de otimização não-linear restrita. |