Sumarização de Opinião com base em Abstract Meaning Representation

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Inácio, Marcio Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092021-141741/
Resumo: A área de Mineração de Opiniões visa a processar automaticamente textos subjetivos que emitem a crítica do autor a respeito de alguma entidade (como produtos ou serviços). Essa área vem crescendo devido às grandes quantidades de dados produzidos na web, tendo como uma de suas aplicações a Sumarização de Opiniões, em que um sistema gera automaticamente um resumo dos principais comentários a respeito da entidade avaliada. Alguns trabalhos mais recentes propõem abordagens baseadas em análises semânticas mais profundas através do uso de representações semânticas, argumentando que essas análises produzem melhores resultados capazes de lidar com sentimentos e informações implícitas no texto. Entre as representações semânticas existentes na literatura, a Abstract Meaning Representation (AMR) vem ganhando notoriedade por se basear em recursos bem consolidados, como o PropBank, e por ter apresentado bons resultados em diversas tarefas, como a Sumarização Automática. Neste trabalho de mestrado, propõe-se fazer o uso da representação AMR na Mineração de Opinião, mais especificamente aplicada à Sumarização de Opiniões, abordando diferentes frentes de trabalho, como a anotação de um córpus de opiniões em AMR e uma análise dos resultados dessa anotação em comparação a textos jornalísticos, bem como o desenvolvimento de novos métodos de sumarização automática de opiniões baseados em AMR. Como principal resultado, foi possível verificar que o uso das representações semânticas explícitas auxiliou na seleção de informações para os resumos. Além disso, alguns dos novos métodos desenvolvidos se mostraram melhores quando comparados às tecnicas baseadas em AMR já existentes na literatura.