Arquitetura pipeline reconfigurável através de instruções geradas por programação genética para processamento morfológico de imagens digitais utilizando FPGAs

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Pedrino, Emerson Carlos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-17032009-151610/
Resumo: A morfologia matemática fornece ferramentas poderosas para a realização de análise de imagens em baixo nível e tem encontrado aplicações em diversas áreas, tais como: visão robótica, inspeção visual, medicina, análise de textura, entre outras. Muitas dessas aplicações requerem processamento em tempo real e para sua execução de forma eficiente freqüentemente é utilizado hardware dedicado. Também, a tarefa de projetar operadores morfológicos manualmente para uma dada aplicação não é trivial na prática. A programação genética, que é um ramo relativamente novo em computação evolucionária, está se consolidando como um método promissor em aplicações envolvendo processamento de imagens digitais. Seu objetivo primordial é descobrir como os computadores podem aprender a resolver problemas sem, no entanto, serem programados para essa tarefa. Essa área ainda não foi muito explorada no contexto de construção automática de operadores morfológicos. Assim, neste trabalho, desenvolve-se e implementa-se uma arquitetura original, de baixo custo, reconfigurável por meio de instruções morfológicas e lógicas geradas automaticamente através de uma aproximação linear baseada em programação genética, visando-se o processamento morfológico de imagens em tempo real utilizando FPGAs de alta complexidade, com objetivos de filtragem, reconhecimento de padrões e emulação de filtros desconhecidos de softwares comerciais, para citar somente algumas aplicações. Exemplos de aplicações práticas envolvendo imagens binárias, em níveis de cinza e coloridas são fornecidos e seus resultados são comparados com outras formas de implementação.