Completamento de matrizes de distâncias Euclidianas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Marcondes, Diaulas Murize Santana Vieira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-07012021-170531/
Resumo: Matrizes de distâncias Euclidianas são ferramentas importantes para a área de geometria de distâncias. Já faz muito tempo que estudam-se o problema de identificar se uma matriz é ou não uma matriz de distâncias Euclidianas e o problema de encontrar pontos que satisfazem as distâncias de uma matriz de distâncias Euclidianas dada. O problema de completamento de matrizes de distâncias Euclidianas possui várias aplicações importantes como localização de rede de sensores sem fio, conformação molecular, aprendizado de máquina, etc. Muitos trabalhos propõem métodos e técnicas para a solução desse problema. Neste trabalho estamos interessados em estudar, implementar e avaliar métodos de projeção, como os métodos de Dykstra, Douglas-Rahford e de reflexão circuncentrada, e métodos de otimização para encontrar uma solução do problema de completamento de matrizes de distâncias Euclidianas.