Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Marcondes, Diaulas Murize Santana Vieira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-07012021-170531/
|
Resumo: |
Matrizes de distâncias Euclidianas são ferramentas importantes para a área de geometria de distâncias. Já faz muito tempo que estudam-se o problema de identificar se uma matriz é ou não uma matriz de distâncias Euclidianas e o problema de encontrar pontos que satisfazem as distâncias de uma matriz de distâncias Euclidianas dada. O problema de completamento de matrizes de distâncias Euclidianas possui várias aplicações importantes como localização de rede de sensores sem fio, conformação molecular, aprendizado de máquina, etc. Muitos trabalhos propõem métodos e técnicas para a solução desse problema. Neste trabalho estamos interessados em estudar, implementar e avaliar métodos de projeção, como os métodos de Dykstra, Douglas-Rahford e de reflexão circuncentrada, e métodos de otimização para encontrar uma solução do problema de completamento de matrizes de distâncias Euclidianas. |