Exploiting Inter-session Dynamics for Long Intra-Session Sequences of Interactions with Deep Reinforcement Learning for Session-Aware Recommendation

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Ticona, Gustavo Junior Escobedo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-23062021-105306/
Resumo: Recommender systems are tools whose objective is to filter relevant content to users according to their preferences. Recently, due to the new demands of electronic business where most of users are not authenticated, Session-based recommender systems emerged. This approach models session data (e.g. sequences of interactions, item metadata) to predict which items will be relevant for the user during the current session. Session-aware approaches include representations from users past sessions to improve performance on fresh new sessions. However, current approaches only exploit these representations at the beginning of the session which in a long sequence of interactions does not take advantage of possible changes of interest during the same session. Consequently, in this research work, we explore the possibility of exploiting inter-session representations to improve recommendation performance. We proposed an adaptation of the Deep Deterministic Policy Gradient algorithm on a session-aware recommender model to train a policy that handles the interaction between the current intra-session state and inter-session representations. We performed several experiments on two datasets from different domains finding key factors that affect session-aware models performance. However, we could not find strong evidence to claim that inter-session dynamics can improve performance during long sequences of intra-session interactions.