Controle preditivo com enfoque em subespaços.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Fernandez, Erika Maria Francischinelli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3137/tde-08092010-133556/
Resumo: Controle preditivo baseado em modelos (MPC) é uma técnica de controle amplamente utilizada na indústria de processos químicos. Por outro lado, o método de identificação em subespaços (SID) tem se mostrado uma alternativa eficiente para os métodos clássicos de identificação de sistemas. Pela combinação dos conceitos de MPC e SID, surgiu, no final da década de 90, uma nova técnica de controle, denominada controle preditivo com enfoque em subespaços (SPC). Essa técnica também é conhecida como controle preditivo orientado a dados. Ela substitui por um único passo as três etapas do projeto de um MPC: a identificação do modelo, o cálculo do observador de estados e a construção das matrizes de predição. Este trabalho tem como principal objetivo revisar estudos feitos na área de SPC, aplicar esse método em sistemas típicos da indústria química e propor novos algoritmos. São desenvolvidos três algoritmos de excitação interna para o método SPC, que permitem gerar dados persistentemente excitantes enquanto um controle mínimo do processo é garantido. Esses algoritmos possibilitam aplicar identificação em malha fechada, na qual o modelo do controlador SPC é reidentificado utilizando dados previamente excitados. Os controladores SPC e SPC com excitação interna são testados e comparados ao MPC por meio de simulações em dois processos distintos. O primeiro consiste em uma coluna debutanizadora de uma unidade de destilação, para a qual são disponibilizados dois modelos lineares referentes a pontos de operação diferentes. O segundo é um reator de polimerização de estireno com dinâmica não linear, cujo modelo fenomenológico é conhecido. Os resultados dos testes indicam que o SPC é mais suscetível a ruídos de medição. Entretanto, verifica-se que esse controlador corrige perturbações nos set-points das variáveis controladas mais rapidamente que o MPC. Simulações realizadas para o SPC com excitação interna mostram que os algoritmos propostos neste trabalho excitam o sistema satisfatoriamente, de modo que modelos mais precisos são obtidos na reidentificação com os dados excitados.